|
In algebraic geometry, the Segre cubic is a cubic threefold embedded in 4 (or sometimes 5) dimensional projective space, studied by . The Segre cubic is the set of points (''x''0:''x''1:''x''2:''x''3:''x''4:''x''5) of ''P''5 satisfying the equations : : Its intersection with any hyperplane ''x''''i'' = 0 is the Clebsch cubic surface. Its intersection with any hyperplane ''x''''i'' = ''x''''j'' is Cayley's nodal cubic surface. Its dual is the Igusa quartic 3-fold in P4. Its Hessian is the Barth–Nieto quintic. A cubic hypersurface in ''P''4 has at most 10 nodes, and up to isomorphism the Segre cubic is the unique one with 10 nodes. Its nodes are the points conjugate to (1:1:1:−1:−1:−1) under permutations of coordinates. ==References== * * * 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Segre cubic」の詳細全文を読む スポンサード リンク
|